Heller triangulated categories
نویسنده
چکیده
Let E be a Frobenius category, let E denote its stable category. The shift functor on E induces a first shift functor on the category of acyclic complexes with entries in E by pointwise application. Shifting a complex by 3 positions yields a second shift functor on this category. Passing to the quotient modulo split acyclic complexes, Heller remarked that these two shift functors become isomorphic, via an isomorphism satisfying still a further compatibility. Moreover, Heller remarked that a choice of such an isomorphism determines a triangulation on E , except for the octahedral axiom. We generalize the notion of acyclic complexes such that the accordingly enlarged version of Heller’s construction includes octahedra.
منابع مشابه
2 9 A ug 2 00 5 A definition of triangulated categories following Heller Matthias
Let E be a Frobenius category, let E denote its homotopy category. The shift functor on E induces a first shift functor on the category of acyclic complexes with entries in E by pointwise application. Shifting a complex by 3 positions yields a second shift functor on this category. Passing to the quotient modulo split acyclic complexes, Heller remarked that these two shift functors become isomo...
متن کامل2 8 Fe b 20 07 Heller triangulated categories Matthias
Let E be a Frobenius category. Let E denote its stable category. The shift functor on E induces, by pointwise application, an inner shift functor on the category of acyclic complexes with entries in E . Shifting a complex by 3 positions yields an outer shift functor on this category. Passing to the quotient modulo split acyclic complexes, Heller remarked that inner and outer shift become isomor...
متن کاملThe axioms for n-angulated categories
Triangulated categories were introduced independently in algebraic geometry by Verdier [7, 8], based on ideas of Grothendieck, and in algebraic topology by Puppe [6]. These constructions have since played a crucial role in representation theory, algebraic geometry, commutative algebra, algebraic topology and other areas of mathematics (and even theoretical physics). Recently, Geiss, Keller and ...
متن کاملTriangulated categories without models
We exhibit examples of triangulated categories which are neither the stable category of a Frobenius category nor a full triangulated subcategory of the homotopy category of a stable model category. Even more drastically, our examples do not admit any non-trivial exact functors to or from these algebraic respectively topological triangulated categories. Introduction. Triangulated categories are ...
متن کاملTriangulated Categories: Definitions, Properties and Examples
Triangulated categories were introduced in the mid 1960’s by J.L. Verdier in his thesis, reprinted in [15]. Axioms similar to Verdier’s were independently also suggested in [2]. Having their origins in algebraic geometry and algebraic topology, triangulated categories have by now become indispensable in many different areas of mathematics. Although the axioms might seem a bit opaque at first si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007